Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Curr Opin HIV AIDS ; 18(4): 191-208, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-20237492

ABSTRACT

PURPOSE OF REVIEW: Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS: The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY: The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Animals , Humans , HIV Infections/prevention & control , Broadly Neutralizing Antibodies , HIV Antibodies , Antibodies, Neutralizing , Pandemics , HIV-1/genetics , COVID-19/therapy , Antibodies, Monoclonal/genetics
2.
PLoS One ; 17(1): e0262868, 2022.
Article in English | MEDLINE | ID: covidwho-1643287

ABSTRACT

A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.


Subject(s)
Antibodies, Viral/chemistry , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/chemistry , Epidemiological Monitoring , Female , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin M/chemistry , Immunoglobulin M/immunology , Male , Middle Aged , New York/epidemiology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2/classification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
3.
J Virol ; 96(3): e0145521, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1532961

ABSTRACT

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the outcome of coronavirus disease 2019 (COVID-19) have been linked to underlying health conditions and the age of affected individuals. Here, we assessed the effect of age on SARS-CoV-2 infection using a ferret model. For this, young (6-month-old) and aged (18- to 39-month-old) ferrets were inoculated intranasally with various doses of SARS-CoV-2. By using infectious virus shedding in respiratory secretions and seroconversion, we estimated that the infectious dose of SARS-CoV-2 in aged animals is ∼32 PFU per animal, while in young animals it was estimated to be ∼100 PFU. We showed that viral replication in the upper respiratory tract and shedding in respiratory secretions is enhanced in aged ferrets compared to young animals. Similar to observations in humans, this was associated with higher transcription levels of two key viral entry factors, ACE2 and TMPRSS2, in the upper respiratory tract of aged ferrets. IMPORTANCE In humans, ACE2 and TMPRSS2 are expressed in various cells and tissues, and differential expression has been described in young and old people, with a higher level of expressing cells being detected in the nasal brushing of older people than young individuals. We described the same pattern occurring in ferrets, and we demonstrated that age affects susceptibility of ferrets to SARS-CoV-2. Aged animals were more likely to get infected when exposed to lower infectious dose of the virus than young animals, and the viral replication in the upper respiratory tract and shedding are enhanced in aged ferrets. Together, these results suggest that the higher infectivity and enhanced ability of SARS-CoV-2 to replicate in aged individuals is associated, at least in part, with transcription levels of ACE2 and TMPRSS2 at the sites of virus entry. The young and aged ferret model developed here may represent a great platform to assess age-related differences in SARS-CoV-2 infection dynamics and replication.


Subject(s)
COVID-19/virology , Disease Susceptibility , Host-Pathogen Interactions , SARS-CoV-2/physiology , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biomarkers , COVID-19/genetics , COVID-19/immunology , Disease Models, Animal , Ferrets , Gene Expression , Host-Pathogen Interactions/immunology , Organ Specificity , RNA, Viral , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Load
4.
Viruses ; 13(8)2021 07 31.
Article in English | MEDLINE | ID: covidwho-1335235

ABSTRACT

Coronavirus disease 19 (COVID-19), has claimed millions of human lives worldwide since the emergence of the zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in December 2019. Notably, most severe and fatal SARS-CoV-2 infections in humans have been associated with underlying clinical conditions, including diabetes, hypertension and heart diseases. Here, we describe a case of severe SARS-CoV-2 infection in a domestic cat (Felis catus) that presented with hypertrophic cardiomyopathy (HCM), a chronic heart condition that has been described as a comorbidity of COVID-19 in humans and that is prevalent in domestic cats. The lung and heart of the affected cat presented clear evidence of SARS-CoV-2 replication, with histological lesions similar to those observed in humans with COVID-19 with high infectious viral loads being recovered from these organs. The study highlights the potential impact of comorbidities on the outcome of SARS-CoV-2 infection in animals and provides important information that may contribute to the development of a feline model with the potential to recapitulate the clinical outcomes of severe COVID-19 in humans.


Subject(s)
COVID-19/virology , Cardiomyopathy, Hypertrophic/virology , SARS-CoV-2/physiology , Animals , COVID-19/pathology , Cardiomyopathy, Hypertrophic/pathology , Cats , Heart/virology , Lung/virology , SARS-CoV-2/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL